Phosphorylation of Metabolites Involved in Salvage Pathways for Isoprenoid Biosynthesis in Plants

Author:

Hemmerlin Andréa1ORCID

Affiliation:

1. Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, Université de Strasbourg, 12, rue du Général Zimmer, F-67084 Strasbourg, France

Abstract

The recycling of metabolic products is a major way to reduce the energy cost of de novo biosynthesis. The salvage pathways involved not only regain a metabolic product but also generate additional molecules that might serve specific physiological, developmental and/or defensive functions. The isoprenoid pathway is a perfect example of a fine-regulated biosynthetic pathway, by virtue of the large number of molecules with different functions that must be synthesized simultaneously. Additionally, isoprenoid salvage pathways have been characterized. Thus, to produce isoprenoid precursors such as farnesyl diphosphate or phytyl diphosphate, short-chain isoprenols recovered from end-chain metabolites are phosphorylated. In the first instance, the so-called FPP-salvage machinery recycles farnesyl diphosphate from proteolyzed farnesylated proteins. In a second example, phytyl diphosphate is recycled from degraded chlorophyll, to be used for the biosynthesis of vitamin E. Both compounds are recovered as alcohols and require two phosphorylation events to be reactivated and reintegrated into the isoprenoid biosynthetic pathway. This review covers current knowledge of isoprenol biosynthesis, metabolism and function, as well as potential benefits of recycling pathways for plants, with a particular focus on stress responses.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3