Effect of C3-Alcohol Impurities on Alumina-Catalyzed Bioethanol Dehydration to Ethylene: Experimental Study and Reactor Modeling

Author:

Ovchinnikova Elena V.1,Banzaraktsaeva Sardana P.1,Kovgan Maria A.1,Chumachenko Victor A.1

Affiliation:

1. Boreskov Institute of Catalysis SB-RAS, 5, Lavrentiev Ave., Novosibirsk 630090, Russia

Abstract

The impact of feedstock impurities on catalytic process is among the crucial issues for processing real raw materials. A real and model 92%-bioethanol contaminated with 0.03–0.3% mol 1-propanol or 2-propanol were used to make ethylene on a proprietary alumina catalyst in isothermal flow reactor. We proposed a formal kinetic model to describe the impure bioethanol conversion to ethylene and byproducts and used it to evaluate the multi-tubular reactor (MTR) for 60 KTPA ethylene production. The simulated data agree well with experimental results. Under reaction-controlled conditions, C3-alcohols strongly suppress the formation of by-products and ethylene-from-ethanol, and slightly inhibit the formation of ethylene-via-ether. It is the suppression of the ethylene-via-ether route that causes a decrease in ethanol conversion. The predominant formation of ethylene-via-ether results in an increased ethylene yield but doubling the catalyst load is required to achieve conversion as for pure feedstock. 2-Propanol has a stronger effect on dehydration than 1-propanol. Diffusion inside the grain’s levels out the effect of C3-alcohols on the process in MTR, giving an ethylene yield as high as ~98% while dehydrating a contaminated 92% ethanol. However, impurities dilute ethanol and generate propylene (which contaminates target product), and these worsen feedstock consumption and ethylene productivity in MTR.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3