Adsorption Efficiency and Photocatalytic Activity of Silver Sulfide Nanoparticles Deposited on Carbon Nanotubes

Author:

Neelgund Gururaj M.1ORCID,Aguilar Sanjuana Fabiola1,Jimenez Erica A.1,Ray Ram L.2ORCID

Affiliation:

1. Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA

2. College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX 77446, USA

Abstract

A multimode, dual functional nanomaterial, CNTs-Ag2S, comprised of carbon nanotubes (CNTs) and silver sulfide (Ag2S) nanoparticles, was prepared through the facile hydrothermal process. Before the deposition of Ag2S nanoparticles, hydrophobic CNTs were modified to become hydrophilic through refluxing with a mixture of concentrated nitric and sulfuric acids. The oxidized CNTs were employed to deposit the Ag2S nanoparticles for their efficient immobilization and homogenous distribution. The CNTs-Ag2S could adsorb toxic Cd(II) and completely degrade the hazardous Alizarin yellow R present in water. The adsorption efficiency of CNTs-Ag2S was evaluated by estimating the Cd(II) adsorption at different concentrations and contact times. The CNTs-Ag2S could adsorb Cd(II) entirely within 80 min of the contact time, while CNTs and Ag2S could not pursue it. The Cd(II) adsorption followed the pseudo-second-order, and chemisorption was the rate-determining step in the adsorption process. The Weber−Morris intraparticle pore diffusion model revealed that intraparticle diffusion was not the sole rate-controlling step in the Cd(II) adsorption. Instead, it was contributed by the boundary layer effect. In addition, CNTs-Ag2S could completely degrade alizarin yellow R in water under the illumination of natural sunlight. The Langmuir-Hinshelwood (L-H) model showed that the degradation of alizarin yellow R proceeded with pseudo-first-order kinetics. Overall, CNTs-Ag2S performed as an efficient adsorbent and a competent photocatalyst.

Funder

National Academy of Sciences

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3