Non-Conventional Oilseeds: Unlocking the Global Potential for Sustainable Biofuel Production

Author:

Alhammad Bushra Ahmed1,Jamal Aftab2ORCID,Carlucci Claudia3ORCID,Saeed Muhammad Farhan4ORCID,Seleiman Mahmoud F.56ORCID,Pompelli Marcelo F.7ORCID

Affiliation:

1. Biology Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al Kharj Box 292, Riyadh 11942, Saudi Arabia

2. Department of Soil and Environmental Sciences, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar 25130, Pakistan

3. CNR-Institute of Nanotechnology (CNR-NANOTEC), c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy

4. Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan

5. Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia

6. Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt

7. Facultad de Ciencias Agrícolas, Universidad de Córdoba, Montería 230002, Colombia

Abstract

Renewable energy sources have become an urgent worldwide concern due to the impacts of global warming. Globally, biofuels can significantly reduce greenhouse gas emissions, which are major contributors to global warming. The use of biofuels has the potential to transform the energy landscape while mitigating the adverse effects of traditional fossil fuels. This study examines the water features, biochemical compositions, and fatty acid profiles among various plant species. The results reveal significant variations in water features as a consequence of the relative water content and water potential of each seed. Also, we note that some non-edible species like A. blanchetii, C. procera, E. oleracea, P. juliflora, M. oleifera, and J. curcas have good attributes that confer a biofuel-like species. These attributes are high in oil content and have a good profile content of long-chain polyunsaturated fatty acids (LC-PUFAs), ranging from 35% to 80% among the different oilseeds. Fatty acid profiling reveals distinct compositions among the plant species. Stearic acid (C18:0), oleic acid (C18:1), and linoleic acid (C18:2) were the principal oils in A. blanchetii, J. curcas, P. juliflora, M. oleifera, and S. tuberosa compared to other species. M. oleifera stands out with a high linoleic acid (C18:1) content, while C. maxima, J. curcas, and P. juliflora are even higher (C18:2). A principal component analysis (PCA) and Pearson correlations analysis also confirmed that alternative oilseeds exhibited similarities to standard oilseeds and have the potential to replace them for biofuel production. These findings demonstrate the potential of non-conventional oilseeds for sustainable biofuel production. By unlocking their global potential, we can advance towards mitigating environmental impacts and fostering a sustainable biofuel industry.

Funder

Prince Sattam bin Abdulaziz University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3