N-Doped TiO2-Nb2O5 Sol–Gel Catalysts: Synthesis, Characterization, Adsorption Capacity, Photocatalytic and Antioxidant Activity

Author:

Fuziki Maria E. K.1ORCID,Ribas Laura S.2ORCID,Abreu Eduardo1ORCID,Fernandes Luciano3,dos Santos Onélia A. A.1,Brackmann Rodrigo4ORCID,de Tuesta Jose L. D.5,Tusset Angelo M.6ORCID,Lenzi Giane G.6ORCID

Affiliation:

1. Department of Chemical Engineering, State University of Maringá, Maringá 87020-900, Paraná, Brazil

2. Department of Chemical Engineering, Federal University of Technology-Paraná, Doutor Washington Subtil Chueire St. 330, Ponta Grossa 84017-220, Paraná, Brazil

3. Department of Chemistry, Federal University of Technology-Paraná, Doutor Washington Subtil Chueire St. 330, Ponta Grossa 84017-220, Paraná, Brazil

4. Department of Chemistry, Federal University of Technology-Paraná, Via do Conhecimento, Km 1, Pato Branco 85503-390, Paraná, Brazil

5. Department of Chemical and Environmental Technology, Rey Juan Carlos University, 28933 Móstoles, Spain

6. Department of Production Engineering, Federal University of Technology-Paraná, Doutor Washington Subtil Chueire St. 330, Ponta Grossa 84017-220, Paraná, Brazil

Abstract

TiO2-based semiconductors are formidable photocatalysts for redox reaction applications. Although N-doped TiO2-Nb2O5 catalysts have already been explored in the literature, studies on their antioxidant activity are scarce, and systematic investigations on the effects of synthesis parameters over a wide range of %Nb and NH4OH concentrations are limited. In addition, the relationship between optimal pH and %Nb has not yet been adequately explored. In the present work, the sol–gel synthesis of N-doped TiO2-Nb2O5 catalysts was optimized using a design of experiments approach focused on photocatalysis, adsorption, and antioxidant applications. The samples were characterized by TGA, SEM/EDS, XRD, PZC tests, photoacoustic spectroscopy, and N2-adsorption/desorption experiments. The salicylic acid (SA) degradation tests and DPPH radical scavenging assays demonstrated the superior photocatalytic activity (up to 72.9% SA degradation in 30 min, pH 5) and antioxidant capacity (IC50 = 88.9 μg mL−1) of pure TiO2 compared to the N-doped TiO2-Nb2O5 catalysts. The photocatalytic activity, however, proved to be intensely dependent on the pH and %Nb interaction, and at pH 3, the 25Nb-1N-400 catalyst promoted more significant SA degradation (59.9%) compared to pure TiO2 (42.8%). In the methylene blue (MB) adsorption tests, the catalysts N-doped TiO2-Nb2O5 showed removals at least seven times greater than TiO2 catalysts without Nb.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3