Fabrication and Application of Ag, Black TiO2 and Nitrogen-Doped 3D Reduced Graphene Oxide (3D Black TiO2/Ag/N@rGO) Evaporator for Efficient Steam Generation

Author:

Bezza Fisseha A.1ORCID,Iwarere Samuel A.1ORCID,Tichapondwa Shepherd M.1ORCID,Chirwa Evans M. N.1ORCID

Affiliation:

1. Water Utilization and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa

Abstract

The scarcity of fresh water, which is aggravated by rapid economic development and population growth, is a major threat to the modern world. Solar-driven interfacial desalination and steam generation is a promising strategy that localizes heat at the air-water interface through appropriate thermal management and demonstrates efficient photothermal performance. In the current study, Ag, black TiO2, and nitrogen-doped 3D reduced graphene oxide (3D black TiO2/Ag/N@rGO) hierarchical evaporator was fabricated, and its morphology, elemental composition, porosity, broadband solar absorption potential, photothermal performance, and interfacial desalination potential were assessed. The 3D solar evaporator showed efficient solar absorption over the entire broadband UV-visible near-infrared (UV-Vis NIR) region and demonstrated 99% photothermal conversion efficiency and potential freshwater generation of 1.43 kg·m−2 h−1. The specific surface area and porosity analyses demonstrated an ultrahigh specific surface area, high pore volume, and a mesoporous structure, with a predominant pore diameter of 4 nm. The strong photothermal performance can be attributed to the nitrogen doping of the rGO, which boosted the electrocatalytic and photothermal activity of the graphene through the activation of the excess free-flowing π electrons of the sp2 configuration of the graphene; the broadband solar absorption potential of the black TiO2; and the localized surface plasmon resonance effect of the AgNPs, which induced hot electron generation and enhanced photothermal conversion. Hence, the high photothermal conversion efficiency attained can be attributed to the synergistic photothermal performances of the individual components and the high interfacial surface area, abundant heat, and mass transfer microcavities of the 3D hierarchical porous solar absorber, offering multiple reflections of light and enhanced solar absorption. The study highlights the promising potential of the 3D evaporator for real-word interfacial desalination of seawater, helping to solve the water shortage problem sustainably.

Funder

Water Research Commission (WRC) of the Republic of South Africa

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference79 articles.

1. Four billion people facing severe water scarcity;Mekonnen;Sci. Adv.,2016

2. Effect of water depth in productivity enhancement of fouling-free non-contact nanostructure desalination system;Mohiuddin;Sustain. Energy Technol. Assess.,2022

3. The energy efficiency of interfacial solar desalination;Luo;Appl. Energy,2021

4. Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation;Lu;ACS Nano,2021

5. Hierarchically structured bilayer Aerogel-based Salt-resistant solar interfacial evaporator for highly efficient seawater desalination;Wang;Sep. Purif. Technol.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3