Affiliation:
1. Chemical Engineering Department, King Fahad University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
2. Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
Abstract
Fluidized catalytic cracking of vacuum gas oil is considered a promising factor in enhancing the gasoline yield to fulfill global energy demands. In this study, a series of FCC catalysts with a zeolite to matrix ratio varying from 18 to 50 was prepared using USY zeolite and amorphous matrix. The matrix was composed of amorphous silica-alumina, kaolin, and silica sol binder. All fresh catalysts were subjected to hydrothermal deactivation treatment at 750 °C for 5 h. The performance evaluation of FCC catalysts was conducted in a fixed bed microactivity test unit, with vacuum gas oil as feed at 550 °C. Comparing a steamed CAT01 sample with a fresh CAT01, the surface area of the steamed sample was 23.3% less. Similarly, the fresh sample CAT05 acidity increased by 102% when compared with the fresh CAT01 sample. As the zeolite to matrix ratio increased, the selectivity of dry gas, LPG, and coke increased, associated with a consistent decrease in gasoline and heavy ends (LCO and HCO). The combined selectivity of product gasoline and LCO with low-zeolite steamed catalyst (CAT01) was 82%, and that of high-zeolite steamed catalyst (CAT05) was 76%. Furthermore, coke selectivity for the steamed CAT01 was 2.1%, whereas 3.7% was observed for the steamed CAT05 sample. The effect of the zeolite to matrix ratio was less pronounced in steamed catalysts as compared with fresh catalysts.
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献