Affiliation:
1. Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakorn Pathom 73000, Thailand
2. Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
Abstract
Aiming at developing low-cost, high-performance catalysts for the electrochemical reduction of CO2 (CO2-ERR) to valuable multicarbon (C2–C3) chemicals to alleviate global warming, trimetallic alloy electrocatalysts containing Cu, Ni, and Sn supported on a Pd-activated carbon fabric substrate (CS) were prepared via an electroless deposition method. The as-deposited CuNiSn/CS electrocatalysts were employed in CO2-ERR in an H-cell type reactor at an applied potential of −1.6 V vs. Ag/AgCl. The effect of the electroless deposition time (15, 30, and 45 min) was investigated, finding no significant structural differences according to the X-ray diffraction patterns. The evaluation of the reaction performance via linear sweep voltammetry revealed that CO2 was more effectively reduced to adsorbed species on the catalytic surface sites of the electrocatalyst prepared with a 30 min deposition time. The analysis of the gas and liquid products via gas chromatography and nuclear magnetic resonance, respectively, revealed that the Faradaic efficiency and H2 production over CuNiSn/CS was lower than those over related bimetallic and monometallic electrocatalysts, indicating the inhibition of the competitive H2 evolution reaction. Liquid products including formate, ethylene glycol, acetone, ethanol, acetate, and 1-buthanol were detected.
Funder
Thailand Science Research and Innovation (TSRI) National Science
Research and Innovation Fund
National Research Council of Thailand
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献