Affiliation:
1. Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China
2. Experimental Training Teaching Center, Moutai Institute, Renhuai 564502, China
Abstract
In this study, a density functional theory method is employed to investigate the reaction mechanisms of dimethyl carbonate (DMC) formation, through oxidative carbonylation of methanol, on four types of Y zeolites doped with Cu+, Cu2+, Cu2O and CuO, respectively. A common chemical route is found for these zeolites and identified as, first, the adsorbed CH3OH is oxidized to CH3O species; subsequently, CO inserts into CH3O to CH3OCO, which reacts with CH3O to form DMC rapidly; and finally, the adsorbed DMC is released into the gas phase. The rate-limiting step on Cu2+Y zeolite is identified as oxidation of CH3OH to CH3O with activation barrier of 66.73 kJ·mol−1. While for Cu+Y, Cu2O-Y and CuO-Y zeolites, the rate-limiting step is insertion of CO into CH3O, and the corresponding activation barriers are 63.73, 60.01 and 104.64 kJ·mol−1, respectively. For Cu+Y, Cu2+Y and Cu2O-Y zeolites, adsorbed CH3OH is oxidized to CH3O with the presence of oxygen, whereas oxidation of CH3OH on CuO-Y is caused by the lattice oxygen of CuO. The order of catalytic activities of these four types of zeolites with different Cu states follows Cu+Y ≈ Cu2O-Y > Cu2+Y > CuO-Y zeolite. Therefore, CuY catalysts with Cu+ and Cu2O as dominated Cu species are beneficial to the formation of DMC.
Funder
National Natural Science Foundation of China
Zunyi Technology and Big data Bureau, Moutai institute Joint Science and Technology Research and Development Project
Research Foundation for Scientific Scholars of Moutai Institute
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献