Hydrothermally Synthesized Ag@MoS2 Composite for Enhanced Photocatalytic Hydrogen Production

Author:

Yadav Anuja A.1,Hunge Yuvaraj M.2,Dhodamani Ananta G.3,Kang Seok-Won1

Affiliation:

1. Department of Automotive Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea

2. Research Institute of Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan

3. Department of Chemistry, Sadguru Gadage Maharaj College, Karad 415124, Maharashtra, India

Abstract

Photocatalytic hydrogen production is a green, cost-effective, simple, and pollution-free technology for the supply of clean energy, which plays an important role in alleviating the fossil fuel crisis caused by exponentially grown energy consumption. Therefore, designing highly visible-light-active novel photocatalyst materials for photocatalytic hydrogen production is a promising task. The production efficiency of photocatalyst can be improved by using noble metals, which are useful for the effective transfer of charge carriers. This study highlights the synergistic effect of the noble co-catalyst Ag on MoS2 during the investigation of photocatalytic hydrogen production. The hydrothermal method was used for the preparation of an Ag-MoS2 composite, and their structural and morphological characterizations were carried out using different physiochemical characterization techniques. The Ag-MoS2 composite shows an enhanced visible light absorption capacity and photocatalytic hydrogen production rate, as compared to that of pure MoS2, which proves that Ag nanoparticles (NPs) can act as efficient co-catalyst materials for photocatalytic hydrogen production with an improved rate of hydrogen production. Along with this, a possible working mechanism was proposed for visible-light-driven photocatalytic hydrogen production using the Ag@MoS2 composite.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3