Abstract
Hydroxymethylfurfural esters (HMF-esters) have great potential for additive development; for this reason, the goal of this work was to study the optimization of the esterification conversion of HFM and lauric acid using two lipases: the Novozym 435® biocatalyst and immobilized lipase from Thermomyces lanuginosus (TL). For the optimization of conversion, a three-level three-factorial Box–Behnken experimental design was used. The models achieved a good fit (R2 over 90%) for reactions catalyzed with Novozym 435® and immobilized TL lipase. The best conversion, 78.4%, was achieved with immobilized TL lipase using 30 mM HMF, 16 U of biocatalytic activity, and 50 °C. The kinetic parameters without inhibition by the substrate were determined using the Michaelis–Menten mechanism, whereby VMax for both biocatalysts reached the highest values at 50 °C, and the highest enzyme–substrate affinities (low Km) were reached at temperatures of 30 °C and 40 °C. It can be concluded that immobilized TL lipase has the potential to catalyze this reaction since, under optimal reaction conditions, an 80.6% conversion (value predicted) could be achieved.
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献