Progress in Developing LnBaCo2O5+δ as an Oxygen Reduction Catalyst for Solid Oxide Fuel Cells

Author:

Zheng Fa12,Pang Shengli2ORCID

Affiliation:

1. R&D Department, Jiangsu Yushi Energy Group Co., Ltd., Nantong 226500, China

2. Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China

Abstract

Solid oxide fuel cells (SOFCs) represent a breed of eco-friendly, weather-independent, decentralized power generation technologies, distinguished for their broad fuel versatility and superior electricity generation efficiency. At present, SOFCs are impeded by a lack of highly efficient oxygen reduction catalysts, a factor that significantly constrains their performance. The double perovskites LnBaCo2O5+δ (Ln = Lanthanide), renowned for their accelerated oxygen exchange and conductivity features, are widely acclaimed as a promising category of cathode catalysts for SOFCs. This manuscript offers a novel perspective on the physicochemical attributes of LnBaCo2O5+δ accumulated over the past two decades and delineates the latest advancements in fine-tuning the composition and nanostructure for SOFC applications. It highlights surface chemistry under operational conditions and microstructure as emerging research focal points towards achieving high-performance LnBaCo2O5+δ catalysts. This review offers a comprehensive insight into the latest advancements in utilizing LnBaCo2O5+δ in the field of SOFCs, presenting a clear roadmap for future developmental trajectories. Furthermore, it provides valuable insights for the application of double perovskite materials in domains such as water electrolysis, CO2 electrolysis, chemical sensors, and metal–air batteries.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3