Biological and Pharmacological Properties of Carbon Monoxide: A General Overview

Author:

Bilska-Wilkosz AnnaORCID,Górny Magdalena,Iciek MałgorzataORCID

Abstract

Carbon monoxide (CO) is one of the most common causes of inhalation poisoning worldwide. However, it is also well known that CO is produced endogenously in the heme degradation reaction catalyzed by heme oxygenase (HO) enzymes. HO catalyzes the degradation of heme to equimolar quantities of CO, iron ions (Fe2+), and biliverdin. Three oxygen molecules (O2) and the electrons provided by NADPH-dependent cytochrome P450 reductase are used in the reaction. HO enzymes comprise three distinct isozymes: the inducible form, heme oxygenase-1 (HO-1); the constitutively expressed isozyme, heme oxygenase-2 (HO-2); and heme oxygenase-3 (HO-3), which is ubiquitously expressed but possesses low catalytic activity. According to some authors, HO-3 is rather a pseudogene originating from the HO-2 transcript, and it has only been identified in rats. Therefore, cellular HO activity is provided by two major isoforms—the inducible HO-1 and the constitutively expressed HO-2. For many years, endogenously generated CO was treated as a by-product of metabolism without any serious physiological or biochemical significance, while exogenous CO was considered only as an extremely toxic gas with lethal effects. Research in recent years has proven that endogenous and exogenous CO (which may be surprising, given public perceptions) acts not only as an agent that affects many intracellular pathways, but also as a therapeutic molecule. Hence, the modulation of the HO/CO system may be one option for a potential therapeutic strategy. Another option is the administration of CO by exogenous inhalation. As alternatives to gas administration, compounds known as CO-releasing molecules (CORMs) can be administered, since they can safely release CO in the body. The aim of this article is to provide a brief overview of the physiological and biochemical properties of CO and its therapeutic potential.

Publisher

MDPI AG

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3