Extraction of Spectral Information from Airborne 3D Data for Assessment of Tree Species Proportions

Author:

Bohlin JonasORCID,Wallerman JörgenORCID,Fransson Johan E. S.ORCID

Abstract

With the rapid development of photogrammetric software and accessible camera technology, land surveys and other mapping organizations now provide various point cloud and digital surface model products from aerial images, often including spectral information. In this study, methods for colouring the point cloud and the importance of different metrics were compared for tree species-specific estimates at a coniferous hemi-boreal test site in southern Sweden. A total of three different data sets of aerial image-based products and one multi-spectral lidar data set were used to estimate tree species-specific proportion and stem volume using an area-based approach. Metrics were calculated for 156 field plots (10 m radius) from point cloud data and used in a Random Forest analysis. Plot level accuracy was evaluated using leave-one-out cross-validation. The results showed small differences in estimation accuracy of species-specific variables between the colouring methods. Simple averages of the spectral metrics had the highest importance and using spectral data from two seasons improved species prediction, especially deciduous proportion. Best tree species-specific proportion was estimated using multi-spectral lidar with 0.22 root mean square error (RMSE) for pine, 0.22 for spruce and 0.16 for deciduous. Corresponding RMSE for aerial images was 0.24, 0.23 and 0.20 for pine, spruce and deciduous, respectively. For the species-specific stem volume at plot level using image data, the RMSE in percent of surveyed mean was 129% for pine, 60% for spruce and 118% for deciduous.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3