Affiliation:
1. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China
2. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
Abstract
Accurate and near-real-time flood monitoring is crucial for effective post-disaster relief efforts. Although extensive research has been conducted on flood classification, efficiently and automatically processing multi-source imagery to generate reliable flood inundation maps remains challenging. In this study, a new automatic flood monitoring method, utilizing optical and Synthetic Aperture Radar (SAR) imagery, was developed based on the Google Earth Engine (GEE) cloud platform. The Normalized Difference Flood Vegetation Index (NDFVI) was innovatively combined with the Edge Otsu segmentation method, utilizing SAR imagery, to enhance the initial accuracy of flood area mapping. To more effectively distinguish flood areas from non-seasonal water bodies, such as lakes, rivers, and reservoirs, pre-flood Landsat-8 imagery was analyzed. Non-seasonal water bodies were classified using multi-index methods and water body probability distributions, thereby further enhancing the accuracy of flood mapping. The method was applied to the catastrophic floods in Poyang Lake, Jiangxi Province, in 2020, and East Dongting Lake, Hunan Province, China, in 2024. The results demonstrated classification accuracies of 92.6% and 97.2% for flood inundation mapping during the Poyang Lake and East Dongting Lake events, respectively. This method offers efficient and precise information support to decision-makers and emergency responders, thereby fully demonstrating its substantial potential for practical applications.
Funder
Changchun Satellite and Application Industry Major Science and Technology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献