Prediction of Clinical Remission with Adalimumab Therapy in Patients with Ulcerative Colitis by Fourier Transform–Infrared Spectroscopy Coupled with Machine Learning Algorithms

Author:

Kim Seok-Young1,Shin Seung Yong2,Saeed Maham1,Ryu Ji Eun1,Kim Jung-Seop1,Ahn Junyoung1,Jung Youngmi1,Moon Jung Min2ORCID,Choi Chang Hwan2,Choi Hyung-Kyoon1

Affiliation:

1. College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea

2. Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul 06973, Republic of Korea

Abstract

We aimed to develop prediction models for clinical remission associated with adalimumab treatment in patients with ulcerative colitis (UC) using Fourier transform–infrared (FT–IR) spectroscopy coupled with machine learning (ML) algorithms. This prospective, observational, multicenter study enrolled 62 UC patients and 30 healthy controls. The patients were treated with adalimumab for 56 weeks, and clinical remission was evaluated using the Mayo score. Baseline fecal samples were collected and analyzed using FT–IR spectroscopy. Various data preprocessing methods were applied, and prediction models were established by 10-fold cross-validation using various ML methods. Orthogonal partial least squares–discriminant analysis (OPLS–DA) showed a clear separation of healthy controls and UC patients, applying area normalization and Pareto scaling. OPLS–DA models predicting short- and long-term remission (8 and 56 weeks) yielded area-under-the-curve values of 0.76 and 0.75, respectively. Logistic regression and a nonlinear support vector machine were selected as the best prediction models for short- and long-term remission, respectively (accuracy of 0.99). In external validation, prediction models for short-term (logistic regression) and long-term (decision tree) remission performed well, with accuracy values of 0.73 and 0.82, respectively. This was the first study to develop prediction models for clinical remission associated with adalimumab treatment in UC patients by fecal analysis using FT–IR spectroscopy coupled with ML algorithms. Logistic regression, nonlinear support vector machines, and decision tree were suggested as the optimal prediction models for remission, and these were noninvasive, simple, inexpensive, and fast analyses that could be applied to personalized treatments.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3