miR-21/SMAD2 Is Involved in the Decrease in Progesterone Synthesis Caused by Lipopolysaccharide Exposure in Follicular Granulosa Cells of Laying Goose

Author:

Guo Xinyi123,Ying Shijia13,Xiao Huiping12,An Hao13,Guo Rihong3,Dai Zichun3,Wu Wenda12ORCID

Affiliation:

1. MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China

2. School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China

3. Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China

Abstract

Lipopolysaccharide (LPS) is one of the important pathogenic substances of E. coli and Salmonella, which causes injury to the reproductive system. Ovarian dysfunction due to Gram-negative bacterial infections is a major cause of reduced reproductive performance in geese. However, the specific molecular mechanisms of LPS-induced impairment of sex steroid hormone synthesis have not been determined. The regulatory mechanism of miRNA has been proposed in many physiological and pathogenic mechanisms. Therefore, the role of miRNA in breeding geese exposed to LPS during the peak laying period was investigated. In this study, twenty Yangzhou geese at peak laying period were injected with LPS for 0 h, 24 h, and 36 h. The follicular granulosa layer was taken for RNA-seq and analyzed for differentially expressed miRNAs. It was observed that LPS changed the appearance of hierarchical follicles. miRNA sequencing analysis was applied, and miR-21 and SMAD2 (SMAD family member 2) were selected from 51 differentially expressed miRNAs through bioinformatics prediction. The results showed that miR-21 down-regulated SMAD2 expression and progesterone (P4) production in LPS-treated goose granulosa cells (GCs). It also determined that overexpression of miR-21 or silence of SMAD2 suppressed the sex steroid biosynthesis pathway by decreasing STAR and CYP11A1 expression. Down-regulation of miR-21 exacerbates the LPS-induced decline in P4 synthesis and vice versa. The findings indicated that miR-21 was involved in LPS regulation of P4 synthesis in goose granulosa cells by down-regulating SMAD2. This study provides theoretical support for the prevention of LPS-induced ovarian dysfunction in geese.

Funder

National Natural Science Foundation of China

R&D and Demonstration of Key Technologies for Efficient Reproduction of Breeding Geese, Guizhou Provincial Science and Technology Program Project

China Agriculture Research System

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3