A Morphological Post-Processing Approach for Overlapped Segmentation of Bacterial Cell Images

Author:

Abeyrathna Dilanga,Rauniyar Shailabh,Sani Rajesh K.ORCID,Huang Pei-ChiORCID

Abstract

Scanning electron microscopy (SEM) techniques have been extensively performed to image and study bacterial cells with high-resolution images. Bacterial image segmentation in SEM images is an essential task to distinguish an object of interest and its specific region. These segmentation results can then be used to retrieve quantitative measures (e.g., cell length, area, cell density) for the accurate decision-making process of obtaining cellular objects. However, the complexity of the bacterial segmentation task is a barrier, as the intensity and texture of foreground and background are similar, and also, most clustered bacterial cells in images are partially overlapping with each other. The traditional approaches for identifying cell regions in microscopy images are labor intensive and heavily dependent on the professional knowledge of researchers. To mitigate the aforementioned challenges, in this study, we tested a U-Net-based semantic segmentation architecture followed by a post-processing step of morphological over-segmentation resolution to achieve accurate cell segmentation of SEM-acquired images of bacterial cells grown in a rotary culture system. The approach showed an 89.52% Dice similarity score on bacterial cell segmentation with lower segmentation error rates, validated over several cell overlapping object segmentation approaches with significant performance improvement.

Funder

NSF EPSCoR RII T-2 FEC

Nebraska Research Initiative

Publisher

MDPI AG

Subject

General Economics, Econometrics and Finance

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DeepSeeded: Volumetric segmentation of dense cell populations with a cascade of deep neural networks in bacterial biofilm applications;Expert Systems with Applications;2024-03

2. Machine Learning-Assisted Optical Detection of Multilayer Hexagonal Boron Nitride for Enhanced Characterization and Analysis;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

3. Accurate and fast extraction of adhesive cells based on concave points detection and matching;International Journal of Imaging Systems and Technology;2023-06-29

4. Classification of the most common conditionally pathogenic microorganisms on SEM images with YOLO model;2023 IX International Conference on Information Technology and Nanotechnology (ITNT);2023-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3