InstLane Dataset and Geometry-Aware Network for Instance Segmentation of Lane Line Detection

Author:

Cheng Qimin1ORCID,Ling Jiajun1ORCID,Yang Yunfei2ORCID,Liu Kaiji1,Li Huanying1ORCID,Huang Xiao3ORCID

Affiliation:

1. School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China

2. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

3. Department of Environmental Sciences, Emory University, Atlanta, GA 30322, USA

Abstract

Despite impressive progress, obtaining appropriate data for instance-level lane segmentation remains a significant challenge. This limitation hinders the refinement of granular lane-related applications such as lane line crossing surveillance, pavement maintenance, and management. To address this gap, we introduce a benchmark for lane instance segmentation called InstLane. To the best of our knowledge, InstLane constitutes the first publicly accessible instance-level segmentation standard for lane line detection. The complexity of InstLane emanates from the fact that the original data are procured using cameras mounted laterally, as opposed to traditional front-mounted sensors. InstLane encapsulates a range of challenging scenarios, enhancing the generalization and robustness of the lane line instance segmentation algorithms. In addition, we propose GeoLaneNet, a real-time, geometry-aware lane instance segmentation network. Within GeoLaneNet, we design a finer localization of lane proto-instances based on geometric features to counteract the prevalent omission or multiple detections in dense lane scenarios resulting from non-maximum suppression (NMS). Furthermore, we present a scheme that employs a larger receptive field to achieve profound perceptual lane structural learning, thereby improving detection accuracy. We introduce an architecture based on partial feature transformation to expedite the detection process. Comprehensive experiments on InstLane demonstrate that GeoLaneNet can achieve up to twice the speed of current State-Of-The-Artmethods, reaching 139 FPS on an RTX3090 and a mask AP of 73.55%, with a permissible trade-off in AP, while maintaining comparable accuracy. These results underscore the effectiveness, robustness, and efficiency of GeoLaneNet in autonomous driving.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3