Estimation of Forest Stand Volume in Coniferous Plantation from Individual Tree Segmentation Aspect Using UAV-LiDAR

Author:

Zhou Xinshao12,Ma Kaisen3,Sun Hua14ORCID,Li Chaokui3,Wang Yonghong2

Affiliation:

1. College of Information and Electronic Engineering, Hunan City University, Yiyang 413000, China

2. Research Center of Forestry Remote Sensing & Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China

3. National-Local Joint Engineering Laboratory of Geo-Spatial Information Technology, Hunan University of Science and Technology, Xiangtan 411100, China

4. Key Laboratory of Forestry Remote Sensing Based Big Data & Ecological Security for Hunan Province, Changsha 410004, China

Abstract

The main problems of forest parameter extraction and forest stand volume estimation using unmanned aerial vehicle light detection and ranging (UAV-LiDAR) technology are the lack of precision in individual tree segmentation and the inability to directly obtain the diameter at breast height (DBH) parameter. To address such limitations, the study proposed an improved individual tree segmentation method combined with a DBH prediction model to obtain the tree height (H) and DBH for calculating the volume of trees, thus realizing the accurate estimation of forest stand volume from individual tree segmentation aspect. The method involves the following key steps: (1) The local maximum method with variable window combined with the Gaussian mixture model were used to detect the treetop position using the canopy height model for removing pits. (2) The measured tree DBH and H parameters of the sample trees were used to construct an optimal DBH-H prediction model. (3) The duality standing tree volume model was used to calculate the forest stand volume at the individual tree scale. The results showed that: (1) Individual tree segmentation based on the improved Gaussian mixture model with optimal accuracy, detection rate r, accuracy rate p, and composite score F were 89.10%, 95.21%, and 0.921, respectively. The coefficient of determination R2 of the accuracy of the extracted tree height parameter was 0.88, and the root mean square error RMSE was 0.84 m. (2) The Weibull model had the optimal model fit for DBH-H with predicted DBH parameter accuracy, the R2 and RMSE were 0.84 and 2.28 cm, respectively. (3) Using the correctly detected trees from the individual tree segmentation results combined with the duality standing tree volume model estimated the forest stand volume with an accuracy AE of 90.86%. In conclusion, using UAV-LiDAR technology, based on the individual tree segmentation method and the DBH-H model, it is possible to realize the estimation of forest stand volume at the individual tree scale, which helps to improve the estimation accuracy.

Funder

National Natural Science Foundation of China

Hunan Provincial Natural Science Foundation of China

Research project of Hunan Provincial Department of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3