Multi-Feature Cross Attention-Induced Transformer Network for Hyperspectral and LiDAR Data Classification

Author:

Li Zirui1,Liu Runbang1,Sun Le23ORCID,Zheng Yuhui3ORCID

Affiliation:

1. Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212100, China

2. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing 210044, China

3. School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

Transformers have shown remarkable success in modeling sequential data and capturing intricate patterns over long distances. Their self-attention mechanism allows for efficient parallel processing and scalability, making them well-suited for the high-dimensional data in hyperspectral and LiDAR imagery. However, further research is needed on how to more deeply integrate the features of two modalities in attention mechanisms. In this paper, we propose a novel Multi-Feature Cross Attention-Induced Transformer Network (MCAITN) designed to enhance the classification accuracy of hyperspectral and LiDAR data. The MCAITN integrates the strengths of both data modalities by leveraging a cross-attention mechanism that effectively captures the complementary information between hyperspectral and LiDAR features. By utilizing a transformer-based architecture, the network is capable of learning complex spatial-spectral relationships and long-range dependencies. The cross-attention module facilitates the fusion of multi-source data, improving the network’s ability to discriminate between different land cover types. Extensive experiments conducted on benchmark datasets demonstrate that the MCAITN outperforms state-of-the-art methods in terms of classification accuracy and robustness.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3