Application of the Renewable Energy Sources at District Scale—A Case Study of the Suburban Area

Author:

Zygmunt MarcinORCID,Gawin DariuszORCID

Abstract

The protection of the natural environment and countering global warming are crucial worldwide issues. The residential sector has a significant impact on overall energy consumption and associated greenhouse gas emissions. Therefore, it is extremely important to focus on all of the activities that can result in more energy efficient and sustainable city scale areas, preventing global warming. The highest improvement in the energy efficiency of existing buildings is possible by combining their deep refurbishment and the use of renewable energy sources (RES), where solar energy appears to be the best for application in buildings. Modernizations that provide full electrification seem to be a trend towards providing modern, energy efficient and environmentally friendly, smart buildings. Moreover, switching from an analysis at the single building level to the district scale allows us to develop more sustainable neighborhoods, following the urban energy modelling (UEM) paradigm. Then, it is possible to use the energy cluster (EC) concept, focusing on energy-, environmental- and economic-related aspects of an examined region. In this paper, an actual Polish suburban district is examined using the home-developed TEAC software. The software is briefly described and compared with other computer codes applied for UEM. In this study, the examined suburban area is modernized, assuming buildings’ deep retrofitting, the application of RES and energy storage systems, as well as usage of smart metering techniques. The proposed modernizations assumed full electrification of the cluster. Moreover, the examined scenarios show potential electricity savings up to approximately 60%, as well as GHG emission reduction by 90% on average. It is demonstrated that the proposed approach is a valid method to estimate various energy- and environment-related issues of modernization for actual residential clusters.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference49 articles.

1. The Our World in Data https://ourworldindata.org

2. A Roadmap for Moving to a Competitive Low Carbon Economy in 2050,2011

3. The European Environment Agency (IEA) https://www.eea.europa.eu

4. A review of urban energy systems at building cluster level incorporating renewable-energy-source (RES) envelope solutions

5. New domain for promoting energy efficiency: Energy Flexible Building Cluster

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy retrofits for smart and connected communities: Scopes and technologies;Renewable and Sustainable Energy Reviews;2024-07

2. Decision-Making Approach to Urban Energy Retrofit—A Comprehensive Review;Buildings;2023-05-31

3. An improved model for building energy consumption prediction based on time-series analysis;Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction;2023-03-20

4. Deep refurbishment as a pathway towards decarbonization of the polish residential building sector;IV INTERNATIONAL SCIENTIFIC FORUM ON COMPUTER AND ENERGY SCIENCES (WFCES II 2022);2023

5. The New Model of Energy Cluster Management and Functioning;Energies;2022-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3