Exploring the Physiological Multiplicity of Native Microalgae from the Ecuadorian Highland, Italian Lowland and Indoor Locations in Response to UV-B

Author:

Huarancca Reyes ThaisORCID,Chiellini CarolinaORCID,Barozzi Emilio,Sandoval CarlaORCID,Echeverría CristinaORCID,Guglielminetti Lorenzo

Abstract

The differential effects of UV-B on the inhibition or activation of protective mechanisms to maintain cells photosynthetically active were investigated in native microalgae. Four strains were used, including two Chlorella sorokiniana strains, F4 and LG1, isolated from a Mediterranean inland swamp and a recycled cigarette butt’s substrate, respectively, and two isolates from an Ecuadorian highland lake related to Pectinodesmus pectinatus (PEC) and Ettlia pseudoalveolaris (ETI). Monocultures were exposed to acute UV-B (1.7 W m−2) over 18 h under controlled conditions. UV-B-untreated microalgae were used as the control. Comparative physiological responses, including photosynthetic pigments, non-enzymatic antioxidants, and chlorophyll a fluorescence, were evaluated at specific time points. Results showed that UV-B significantly compromised all the physiological parameters in F4, thereby resulting in the most UV-B-sensitive strain. Contrarily, UV-B exposure did not lead to changes in the PEC physiological traits, resulting in the best UV-B-resistant strain. This could be attributed to the acclimation to high light habitat, where maintaining a constitutive phenotype (at the photosynthetic level) is strategically advantageous. Differently, LG1 and ETI at 12 h of UV-B exposure showed different UV-B responses, which is probably related to acclimation, where in LG1, the pigments were recovered, and the antioxidants were still functioning, while in ETI, the accumulation of pigments and antioxidants was increased to avoid further photodamage. Consequently, the prolonged exposure in LG1 and ETI resulted in species-specific metabolic regulation (e.g., non-enzymatic antioxidants) in order to constrain full photoinhibition under acute UV-B.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference60 articles.

1. Richmond, A., and Hu, Q. (2013). Handbook of Microalgal Culture: Applied Phycology and Biotechnology, John Wiley & Sons, Ltd.

2. Al-Qasmi, M., Raut, N., Talebi, S., Al-Rajhi, S., and Al-Barwani, T. (2012, January 4–6). A Review of Effect of Light on Microalgae Growth. Proceedings of the World Congress on Engineering, London, UK.

3. Solar UV-B Radiation, Associated with Ozone Depletion, Inhibits the Antarctic Terrestrial Microalga, Stichococcus bacillaris;Hughes;Polar Biol.,2006

4. Solar Ultraviolet Radiation and Ozone Depletion-Driven Climate Change: Effects on Terrestrial Ecosystems;Bornman;Photochem. Photobiol. Sci.,2015

5. Deadly Ultraviolet UV-C and UV-B Penetration to Earth’s Surface: Human and Environmental Health Implications;Herndon;J. Geogr. Environ. Earth Sci. Int.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3