Role of the Neuroendocrine System of Marine Bivalves in Their Response to Hypoxia

Author:

Kotsyuba Elena,Dyachuk VyacheslavORCID

Abstract

Mollusks comprise one of the largest phylum of marine invertebrates. With their great diversity of species, various degrees of mobility, and specific behavioral strategies, they haveoccupied marine, freshwater, and terrestrial habitats and play key roles in many ecosystems. This success is explained by their exceptional ability to tolerate a wide range of environmental stresses, such as hypoxia. Most marine bivalvemollusksare exposed to frequent short-term variations in oxygen levels in their marine or estuarine habitats. This stressfactor has caused them to develop a wide variety of adaptive strategies during their evolution, enabling to mobilize rapidly a set of behavioral, physiological, biochemical, and molecular defenses that re-establishing oxygen homeostasis. The neuroendocrine system and its related signaling systems play crucial roles in the regulation of various physiological and behavioral processes in mollusks and, hence, can affect hypoxiatolerance. Little effort has been made to identify the neurotransmitters and genes involved in oxygen homeostasis regulation, and the molecular basis of the differences in the regulatory mechanisms of hypoxia resistance in hypoxia-tolerant and hypoxia-sensitive bivalve species. Here, we summarize current knowledge about the involvement of the neuroendocrine system in the hypoxia stress response, and the possible contributions of various signaling molecules to this process. We thusprovide a basis for understanding the molecular mechanisms underlying hypoxic stress in bivalves, also making comparisons with data from related studies on other species.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3