Location Scheme of Routine Nucleic Acid Testing Sites Based on Location-Allocation Models: A Case Study of Shenzhen City

Author:

Wang Siwaner12,Sun Qian12,Chen Pengfei12ORCID,Qiu Hui12,Chen Yang12

Affiliation:

1. School of Geospatial Engineering and Science, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China

2. Key Laboratory of Comprehensive Observation of Polar Environment (Sun Yat-sen University), Ministry of Education, Zhuhai 519082, China

Abstract

Since late 2019, the explosive outbreak of Coronavirus Disease 19 (COVID-19) has emerged as a global threat, necessitating a worldwide overhaul of public health systems. One critical strategy to prevent virus transmission and safeguard public health, involves deploying Nucleic Acid Testing (NAT) sites. Nevertheless, determining the optimal locations for public NAT sites presents a significant challenge, due to the varying number of sites required in different regions, and the substantial influences of population, the population heterogeneity, and daily dynamics, on the effectiveness of fixed location schemes. To address this issue, this study proposes a data-driven framework based on classical location-allocation models and bi-objective optimization models. The framework optimizes the number and location of NAT sites, while balancing various cost constraints and adapting to population dynamics during different periods of the day. The bi-objective optimization process utilizes the Knee point identification (KPI) algorithm, which is computationally efficient and does not require prior knowledge. A case study conducted in Shenzhen, China, demonstrates that the proposed framework provides a broader service coverage area and better accommodates residents’ demands during different periods, compared to the actual layout of NAT sites in the city. The study’s findings can facilitate the rapid planning of primary healthcare facilities, and promote the development of sustainable healthy cities.

Funder

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3