Schisandrae chinensis Fructus Extract Ameliorates Muscle Atrophy in Streptozotocin-Induced Diabetic Mice by Downregulation of the CREB-KLF15 and Autophagy–Lysosomal Pathways

Author:

Choi Ho-Jung,Yeon Myeong-HoonORCID,Jun Hee-SookORCID

Abstract

Type 1 diabetes mellitus is an autoimmune disease caused by the destruction of pancreatic beta cells. Many patients with type 1 diabetes experience skeletal muscle wasting. Although the link between type 1 diabetes and muscle wasting is not clearly known, insulin insufficiency and hyperglycemia may contribute to decreased muscle mass. In this study, we investigated the therapeutic effect of the ethanolic extract of Schisandrae chinensis Fructus (SFe) on muscle wasting in streptozotocin (STZ)-induced diabetic mice. STZ-diabetic C57BL/6 mice (blood glucose level ≥300 mg/dL) were orally administered SFe (250 or 500 mg/kg/day) for 6 weeks. We observed that SFe administration did not change blood glucose levels but increased gastrocnemius muscle weight, cross-sectional area, and grip strength in STZ-induced diabetic mice. Administration of SFe (500 mg/kg) decreased the expression of atrophic factors, such as MuRF1 and atrogin-1, but did not alter the expression of muscle synthetic factors. Further studies showed that SFe administration decreased the expression of KLF15 and p-CREB, which are upstream molecules of atrophic factors. Examination of the expression of molecules involved in autophagy–lysosomal pathways (e.g., p62/SQSTM1, Atg7, Beclin-1, ULK-1, LC3-I, and LC3-II) revealed that SFe administration significantly decreased the expression of p62/SQSTM1, LC3-I, and LC3-II; however, no changes were observed in the expression of Atg7, Beclin-1, or ULK-1. Our results suggest that SFe ameliorated muscle wasting in STZ-induced diabetic mice by decreasing protein degradation via downregulation of the CREB-KLF15-mediated UPS system and the p62/SQSTM1-mediated autophagy–lysosomal pathway.

Funder

Korea Health Industry Development Institute

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3