Quercetin Alleviates the Accumulation of Superoxide in Sodium Iodate-Induced Retinal Autophagy by Regulating Mitochondrial Reactive Oxygen Species Homeostasis through Enhanced Deacetyl-SOD2 via the Nrf2-PGC-1α-Sirt1 Pathway

Author:

Hsu Min-YenORCID,Hsiao Yai-Ping,Lin Yu-Ta,Chen Connie,Lee Chee-Ming,Liao Wen-Chieh,Tsou Shang-Chun,Lin Hui-WenORCID,Chang Yuan-YenORCID

Abstract

Oxidative damage of retinal pigment epithelium (RPE) cells plays an important role in the pathogenesis of blindness-related diseases, such as age-related macular degeneration (AMD). Quercetin, a bioactive flavonoid compound, has been shown to have a protective effect against oxidative stress-induced cell apoptosis and inflammation in RPE cells; however, the detailed mechanism underlying this protective effect is unclear. Therefore, the aim of this study was to investigate the regulatory mechanism of quercetin in a sodium iodate (NaIO3)-induced retinal damage. The clinical features of the mice, the production of oxidative stress, and the activity of autophagy and mitochondrial biogenesis were examined. In the mouse model, NaIO3 treatment caused changes in the retinal structure and reduced pupil constriction, and quercetin treatment reversed the oxidative stress-related pathology by decreasing the level of superoxide dismutase 2 (SOD2) while enhancing the serum levels of catalase and glutathione. The increased level of reactive oxygen species in the NaIO3-treated ARPE19 cells was improved by treatment with quercetin, accompanied by a reduction in autophagy and mitochondrial biogenesis. Our findings indicated that the effects of quercetin on regulating the generation of mtROS were dependent on increased levels of deacetyl-SOD2 through the Nrf2-PGC-1α-Sirt1 signaling pathway. These results demonstrated that quercetin may have potential therapeutic efficacy for the treatment of AMD through the regulation of mtROS homeostasis.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3