Information Fusion and Metallogenic Prognosis of Gold Deposits in the Qixia Area, Northern Shandong Province, China

Author:

Fu Song1,Qiu Mei1,Shi Longqing1,Liu Zenghe1,Yang Xiao1,Liu Tianhao2,Zhang Lei3

Affiliation:

1. College of Earth Sciences and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. Shandong Land Development Group Co., Ltd., Jinan 250014, China

3. Shandong Yushengjiahe Intelligent Technology Co., Ltd., Yantai 265602, China

Abstract

Analyzing and fusing information layers of exploratory parameters is a critical step for enhancing the accuracy of identifying mineral potential zones during the reconnaissance stage of mineral exploration. The Qixia area in Shandong Province is characterized by intricate geological structures and abundant mineral resources. Numerous gold polymetallic deposits have been discovered in this region, highlighting the potential for discovering more such deposits in the ore concentration zone and its adjacent areas. In this study, we focus on the Qixia area and employ the box dimension method to analyze the fractal dimension of fault structures. We investigate the relationship between orebody occurrence and fault incidence within the mining region. Furthermore, we combine fractal analysis with Fry analysis to comprehensively predict the metallogenic potential in the area. This study reveals the fractal dimension values of fault structures, demonstrating that fault structures govern the distribution of ore bodies, with NE and NW fault structures being the primary ore-hosting features. Based on thorough analysis, we hypothesize that gold deposits in this area are generally distributed along the northeastern direction. By considering mineral distribution characteristics, this study identifies five potential metallogenic prospect areas within the study region. Capitalizing on advancements in information technology and big data, digital geology has gained prominence in prospecting and prediction. To this end, we construct a multi-information comprehensive prospecting model based on the structure-geochemical anomaly-mineralization alteration, employing the convolutional neural network (CNN) model for quantitative estimation of regional gold mineral resources. The findings validate the CNN model’s robust prediction performance in this area, leading to the determination of five prediction prospects. We observe a notable congruence between the two methods, offering significant insights for subsequent exploration endeavors in the region.

Funder

Natural Science Foundation of Shandong Province, China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3