PAX7, a Key for Myogenesis Modulation in Muscular Dystrophies through Multiple Signaling Pathways: A Systematic Review

Author:

Rahman Nor Idayu A.1,Lam Chung Liang1ORCID,Sulaiman Nadiah1ORCID,Abdullah Nur Atiqah Haizum1,Nordin Fazlina1ORCID,Ariffin Shahrul Hisham Zainal2,Yazid Muhammad Dain1ORCID

Affiliation:

1. Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia

2. Centre of Biotechnology & Functional Food, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia

Abstract

Muscular dystrophy is a heterogenous group of hereditary muscle disorders caused by mutations in the genes responsible for muscle development, and is generally defined by a disastrous progression of muscle wasting and massive loss in muscle regeneration. Pax7 is closely associated with myogenesis, which is governed by various signaling pathways throughout a lifetime and is frequently used as an indicator in muscle research. In this review, an extensive literature search adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was performed to identify research that examined signaling pathways in living models, while quantifying Pax7 expression in myogenesis. A total of 247 articles were retrieved from the Web of Science (WoS), PubMed and Scopus databases and were thoroughly examined and evaluated, resulting in 19 articles which met the inclusion criteria. Admittedly, we were only able to discuss the quantification of Pax7 carried out in research affecting various type of genes and signaling pathways, rather than the expression of Pax7 itself, due to the massive differences in approach, factor molecules and signaling pathways analyzed across the research. However, we highlighted the thorough evidence for the alteration of the muscle stem cell precursor Pax7 in multiple signaling pathways described in different living models, with an emphasis on the novel approach that could be taken in manipulating Pax7 expression itself in dystrophic muscle, towards the discovery of an effective treatment for muscular dystrophy. Therefore, we believe that this could be applied to the potential gap in muscle research that could be filled by tuning the well-established marker expression to improve dystrophic muscle.

Funder

Research University Fund from Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference85 articles.

1. Muscular dystrophy: Disease mechanisms and therapies;Pandey;BioMed Res. Int.,2015

2. Untangling the complexity of limb-girdle muscular dystrophies;Liewluck;Muscle Nerve,2018

3. Facioscapulohumeral muscular dystrophy;Sacconi;Biochim. Biophys. Acta,2015

4. Duchenne muscular dystrophy;Yiu;J. Paediatr. Child Health,2015

5. Genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies;Hightower;Muscle Nerve,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3