Development of Multiplex Polymerase Chain Reaction (PCR)-Based MSA Assay for Bladder Cancer Detection

Author:

Reynolds Thomas1,Gordon Maxie23,Monar Gabriela Vanessa Flores2ORCID,Moon David2,Moon Chulso234ORCID

Affiliation:

1. NEXT Bio-Research Services, LLC, 11601 Ironbridge Road, Suite 101, Chester, VA 23831, USA

2. HJM Cancer Research Foundation Corporation, 10606 Candlewick Road, Lutherville, MD 21093, USA

3. BCD Innovations USA, 10606 Candlewick Road, Lutherville, MD 21093, USA

4. Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Cancer Research Building II, 5M3, 1550 Orleans Street, Baltimore, MD 21205, USA

Abstract

Several studies have shown that microsatellite changes can be profiled in the urine to detect bladder cancer. Microsatellite analysis (MSA) of bladder cancer detection requires a comprehensive analysis of up to 15–20 markers based on amplifying and interpreting many individual MSA markers, which can be technically challenging. To develop fast, efficient, standardized, and less costly MSA to detect bladder cancer, we developed three multiplex polymerase chain reaction (PCR) based MSA assays, all of which were analyzed by a genetic analyzer. First, we selected 16 MSA markers based on nine publications. We developed MSA assays based on triplet or three-tube-based multiplex PCR (Triplet MSA assay) using samples from Johns Hopkins University (JHU Sample, first set of samples). In the second set of samples (samples from six cancer patients and fourteen healthy individuals), our Triplet Assay with 15 MSA markers correctly predicted all 6/6 cancer samples to be cancerous and 14/14 healthy samples to be healthy. Although we could improve our report with more clinical information from patient samples and an increased number of cancer patients, our overall results suggest that our Triplet MSA Assay combined with a genetic analyzer is a potentially time- and cost-effective genetic assay for bladder cancer detection and has potential use as a dependable assay in patient care.

Funder

Pyung-Ya Foundation

HJM Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3