Understanding the Mechanism of Light-Induced Age-Related Decrease in Melanin Concentration in Retinal Pigment Epithelium Cells

Author:

Dontsov Alexander E.1ORCID,Yakovleva Marina A.1ORCID,Vasin Alexander A.2,Gulin Alexander A.2,Aybush Arseny V.2ORCID,Nadtochenko Viktor A.2,Ostrovsky Mikhail A.1

Affiliation:

1. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia

2. Federal Research Center of Chemical Physics, Russian Academy of Sciences, N.N. Semenov RAS, 119991 Moscow, Russia

Abstract

It is known that during the process of aging, there is a significant decrease in the number of melanosomes in the retinal pigment epithelium (RPE) cells in the human eye. Melanosomes act as screening pigments in RPE cells and are fundamentally important for protection against the free radicals generated by light. A loss or change in the quality of melanin in melanosomes can lead to the development of senile pathologies and aggravation in the development of various retinal diseases. We have previously shown that the interaction between melanin melanosomes and superoxide radicals results in oxidative degradation with the formation of water-soluble fluorescent products. In the present study, we show, using fluorescence analysis, HPLC, and mass spectrometry, that visible light irradiation on melanolipofuscin granules isolated from RPE cells in the human eye results in the formation of water-soluble fluorescent products from oxidative degradation of melanin, which was in contrast to lipofuscin granules and melanosomes irradiation. The formation of these products occurs as a result of the oxidative degradation of melanin by superoxide radicals, which are generated by the lipofuscin part of the melanolipofuscin granule. We identified these products both in the composition of melanolipofuscin granules irradiated with visible light and in the composition of melanosomes that were not irradiated but were, instead, oxidized by superoxide radicals. In the melanolipofuscin granules irradiated by visible light, ions that could be associated with melanin oxidative degradation products were identified by applying the principal component analysis of the time-of-flight secondary ion mass spectrometry (ToF-SIMS) data. Degradation of the intact melanosomes by visible light is also possible; however, this requires significantly higher irradiation intensities than for melanolipofuscin granules. It is concluded that the decrease in the concentration of melanin in RPE cells in the human eye with age is due to its oxidative degradation by reactive oxygen species generated by lipofuscin, as part of the melanolipofuscin granules, under the action of light.

Funder

Ministry of Science and Higher Education of Russia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3