Research Progress and Hot Spot Analysis of the Propagation and Evolution Law of Prefabricated Cracks in Defective Rocks

Author:

Zhu Shu12,Zhu Zhende12ORCID,Wang Luxiang12,Wu Junyu12

Affiliation:

1. Key Laboratory of Ministry of Education of Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China

2. Jiangsu Research Center for Geotechnical Engineering, Hohai University, Nanjing 210098, China

Abstract

The generation of rock mass disasters in underground engineering essentially arises from the disruption of the original three-dimensional stress equilibrium of the rock mass caused by excavation and other activities, leading to the redistribution of stress fields. During the excavation process, the engineering rock mass undergoes complex dynamic stress equilibrium processes involving loading and unloading. This equilibrium process promotes the nucleation, initiation, and propagation of pre-existing cracks in the surrounding rock, resulting in changes in the internal structure of the rock mass and a weakening of its strength. Eventually, this localized cracking extends to global failure. In order to understand the current status better and study the development trends in the study of crack propagation and evolution in defective rock, this study conducts a bibliometric analysis of 288 articles from the Web of Science Core Collection database using CiteSpace software (version 6.1.R4). The results indicate an increasing trend in the annual publication output, characterized by two phases of emergence and rapid development. The countries of China, the United States, and Iran have the highest publication output in this field. The most frequently cited journals include INT J ROCK MECH MIN, ENG FRACT MECH, and ROCK MECH ROCK ENG. This study provides a comprehensive analysis of the current status and development trends in the research on the propagation and evolution of pre-existing cracks. This study enhances the comprehension of crucial aspects of crack propagation and evolution in rock materials with defects. Moreover, it opens up new possibilities for future investigations and holds promising implications for researchers and practitioners in the field.

Funder

National Natural Science Foundation of China

Jiangsu Excellent Postdoctoral Program

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3