Children’s Pain Identification Based on Skin Potential Signal

Author:

Li Yubo12ORCID,He Jiadong1,Fu Cangcang3,Jiang Ke1,Cao Junjie1,Wei Bing4,Wang Xiaozhi12,Luo Jikui12ORCID,Xu Weize35,Zhu Jihua13

Affiliation:

1. College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China

2. International Joint Innovation Center, Zhejiang University, Haining 314400, China

3. Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China

4. Polytechnic Institute of Zhejiang University, Hangzhou 310015, China

5. National Clinical Research Center for Child Health, Hangzhou 310052, China

Abstract

Pain management is a crucial concern in medicine, particularly in the case of children who may struggle to effectively communicate their pain. Despite the longstanding reliance on various assessment scales by medical professionals, these tools have shown limitations and subjectivity. In this paper, we present a pain assessment scheme based on skin potential signals, aiming to convert subjective pain into objective indicators for pain identification using machine learning methods. We have designed and implemented a portable non-invasive measurement device to measure skin potential signals and conducted experiments involving 623 subjects. From the experimental data, we selected 358 valid records, which were then divided into 218 silent samples and 262 pain samples. A total of 38 features were extracted from each sample, with seven features displaying superior performance in pain identification. Employing three classification algorithms, we found that the random forest algorithm achieved the highest accuracy, reaching 70.63%. While this identification rate shows promise for clinical applications, it is important to note that our results differ from state-of-the-art research, which achieved a recognition rate of 81.5%. This discrepancy arises from the fact that our pain stimuli were induced by clinical operations, making it challenging to precisely control the stimulus intensity when compared to electrical or thermal stimuli. Despite this limitation, our pain assessment scheme demonstrates significant potential in providing objective pain identification in clinical settings. Further research and refinement of the proposed approach may lead to even more accurate and reliable pain management techniques in the future.

Funder

Zhejiang basic public welfare research project

Leading Goose R&D Program of Zhejiang Province

Key Research and Development Program of Zhejiang Province

General Research Projects of Zhejiang Provincial Department of Education

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Functional Perspectives of Endogenous Electric Fields in Humans and Rodents: A Viewpoint on Ephaptic Physiology;Electrostatics - Fundamentals and Modern Applications [Working Title];2024-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3