Effect of Litter Removal and Addition on Root Exudation and Associated Microbial N Transformation in a Pinus massoniana Plantation

Author:

Zhang Chengfu1,Zhao Qingxia2,Cai Yinmei3,Zhang Tao2ORCID,Zhang Limin1ORCID,He Tengbing23

Affiliation:

1. Guizhou Institute of Mountain Resources, Guizhou Academy of Sciences, Guiyang 550001, China

2. Institute of New Rural Development, Guizhou University, Guiyang 550025, China

3. College of Agriculture, Guizhou University, Guiyang 550025, China

Abstract

In forest ecosystems, variations in aboveground litter input caused by global changes, substantially alter soil N cycling. In field-grown plants, few studies have directly measured root exudation rates and quantified their effects on N transformations under litter manipulation. We quantified soil N transformation rate responses to litter manipulation in a Pinus massoniana plantation, and unravelled the effect of root exudation on soil N transformations. We measured in situ P. massoniana root exudation rates as well as soil microbial biomass, soil C and N concentrations, the activities of four soil enzymes involved in soil N transformations, and net N mineralization and net nitrification rates after experimental litter removal and litter addition treatments. Litter removal and litter addition treatments had little impact on soil C and N concentrations, microbial biomass, soil enzyme (urease, hydroxylamine reductase, nitrate reductase, and nitrite reductase) activity, and net N mineralization rates. However, both litter removal and addition increased net N nitrification rates. Additionally, litter removal significantly decreased root C exudation rates (in April 2021 and annually), whereas litter addition had no significant effects on root C exudation rates across all seasons. Furthermore, root C exudation rates were positively associated with urease and nitrate reductase activities, but negatively associated with hydroxylamine reductase and nitrite reductase activities, as well as net N nitrification rate. Overall, we demonstrated that root exudates may be an important physiological adjustment by which trees respond to changes in litter input caused by global environmental changes, regulating underground N biochemical processes. Furthermore, we provide new evidence from root exudates for understanding the potential influence of litter inputs on soil N cycling. A strong correlation exists between root exudates and N transformation, shedding new light on the dynamics of rhizosphere nutrient cycling crucial for maintaining forest ecosystem stability and productivity under changing environmental conditions.

Funder

National Natural Science Foundation of China

Guizhou Provincial Basic Research Program

Science and Technology Planning Project of Guizhou Province

Starting Foundation for the Innovation Sector Research of Guizhou Academy of Sciences

Provincial Special Foundation for Scientific Research of Guizhou Academy of Sciences

Publisher

MDPI AG

Subject

Forestry

Reference88 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3