Hybrid Simulation and Planning Platform for Cryosurgery with Microsoft HoloLens

Author:

Condino SaraORCID,Cutolo FabrizioORCID,Cattari NadiaORCID,Colangeli SimoneORCID,Parchi Paolo DomenicoORCID,Piazza RobertaORCID,Ruinato Alfio DamianoORCID,Capanna RodolfoORCID,Ferrari VincenzoORCID

Abstract

Cryosurgery is a technique of growing popularity involving tissue ablation under controlled freezing. Technological advancement of devices along with surgical technique improvements have turned cryosurgery from an experimental to an established option for treating several diseases. However, cryosurgery is still limited by inaccurate planning based primarily on 2D visualization of the patient’s preoperative images. Several works have been aimed at modelling cryoablation through heat transfer simulations; however, most software applications do not meet some key requirements for clinical routine use, such as high computational speed and user-friendliness. This work aims to develop an intuitive platform for anatomical understanding and pre-operative planning by integrating the information content of radiological images and cryoprobe specifications either in a 3D virtual environment (desktop application) or in a hybrid simulator, which exploits the potential of the 3D printing and augmented reality functionalities of Microsoft HoloLens. The proposed platform was preliminarily validated for the retrospective planning/simulation of two surgical cases. Results suggest that the platform is easy and quick to learn and could be used in clinical practice to improve anatomical understanding, to make surgical planning easier than the traditional method, and to strengthen the memorization of surgical planning.

Funder

Regione Toscana

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3