Exopolysaccharides-Mediated ZnO Nanoparticles for the Treatment of Aquatic Diseases in Freshwater Fish Oreochromis mossambicus

Author:

Abinaya Muthukumar1,Shanthi Sathappan1,Palmy Jesudasan2ORCID,Al-Ghanim Khalid3,Govindarajan Marimuthu45ORCID,Vaseeharan Baskaralingam1

Affiliation:

1. Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block, 6th Floor, Burma Colony, Karaikudi 630004, Tamil Nadu, India

2. Poultry Production and Product Safety Research Unit, ARS, USDA, Center of Excellence for Poultry Science, University of Arkansas, 1260 W Maple St., Fayetteville, AR 72701, USA

3. Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

4. Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar 608002, Tamil Nadu, India

5. Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612001, Tamil Nadu, India

Abstract

Bacterial fish disease outbreaks are a key concern for aquaculture. Complementary feed additives such as immunostimulants can serve as an ideal solution for disease prevention. Herein, we scrutinized the efficacy of exopolysaccharides (EPSs) from probiotic Bacillus licheniformis and EPS-mediated zinc oxide nanoparticles (EPS-ZnO NPs) for a diet to evaluate growth parameters, antioxidant enzyme activities, and immune stimulation together with disease resistance against Aeromonas hydrophila and Vibrio parahaemolyticus in Mozambique tilapia Oreochromis mossambicus. Fish were separated into seven groups, with six experimental groups fed with EPS and EPS-ZnO NPs at 2, 5, and 10 mg/g and a control fed a basal diet. The fish ingesting feed supplemented with EPS and EPS-ZnO NPs at 10 mg/g showed improved growth performance. Cellular and humoral-immunological parameters were tested in serum and mucus after 15 and 30 days of feeding. These parameters were substantially enriched with a 10 mg/g diet (p < 0.05) of EPS and EPS-ZnO NPs in comparison with the control. Furthermore, the EPS and EPS-ZnO NP supplemental diet actively enhanced the antioxidant response (glutathione peroxidase, superoxide dismutase, and catalase). In addition, the supplemental diet of EPS and EPS-ZnO NPs lowered the death rate and improved the disease resistance of O. mossambicus following assessment with A. hydrophila and V. parahaemolyticus at 50 µL. Hence, the overall results suggest that the supplemental diet of EPS and EPS-ZnO NPs might be used to ensure aquaculture feed additives.

Funder

King Saud University

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3