Molecular Composition, Seasonal Variation, and Size Distribution of n-Alkanes, PAHs, and Saccharides in a Medium-Sized City of Guanzhong Plain, Northwest China: Evaluation of Control Measures Executed in the Past Decade

Author:

Zhou Bianhong12,Feng Qiao12,Li Chunyan1,Jiao Lihua1,Cheng Kaijing1,Ho Steven Sai Hang3ORCID,Wen Zhongtao4,Li Jianjun2ORCID

Affiliation:

1. Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, College of Geography and Environment, Baoji University of Arts and Sciences, Baoji 721013, China

2. State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China

3. Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, USA

4. Baoji Ecological Environment Science and Technology Service Center, Baoji 721000, China

Abstract

Baoji is a medium-sized city in the Guanzhong Plain of northwest China. The compositions of three important organic groups, namely n-alkanes, polycyclic aromatic hydrocarbons (PAHs), and saccharides in atmospheric aerosol with different aerodynamic diameters in power were determined. Both seasonal and daily trends of the target organic chemical groups were demonstrated. The concentration levels of total quantified n-alkanes and saccharides in total suspended particles (TSP) in winter were 541 ± 39 and 651 ± 74 ng·m−3, respectively, much higher than those of the other three seasons. A high total quantified PAHs concentration level of 59.6 ± 6.4 ng·m−3 was also seen in wintertime. n-Alkanes showed a bimodal percent distribution in spring, autumn, and winter. Two peaks were found with the particle sizes of 0.7 μm < Dp < 2.1 μm and 3.3 μm < Dp < 4.7 μm, respectively. In summer, a unimodal was seen with a peak of 4.7 μm < Dp < 5.8 μm. Dehydrated saccharides and PAHs present a unimodal size distribution peaking at the aerodynamic diameters of 0.7 µm < Dp < 2.1 µm. In contrast to glucose and fructose, they mainly exist in the coarse mode particles and have the highest concentrations at aerodynamic diameters of 4.7 µm < Dp < 9.0 µm. The geometric mean diameters (GMD) of n-alkanes and saccharides of the fine particles in winter were higher than in the other seasons. Compared with the data in 2008, the fossil fuel-derived n-alkanes and PAHs in winter decreased by nearly an order of magnitude in 2017. Both the carbon preference index (CPI) of n-alkanes and the diagnostic ratios of PAHs suggest that coal combustion and vehicle exhaust were the major pollution sources of the organic groups in the two decades. It should be noted that the contribution of traffic emissions greatly increased from 2008 to 2017, consistently with a large raise of registered vehicles in Baoji city. The overall results confirm that the control measures conducted by the local government in the recent decade mitigated the air pollution in this city.

Funder

Shaanxi Provincial Natural Science

National Nature Science Foundation of China

Youth Innovation Promotion Association CAS

Key Laboratory of Aerosol Chemical Physics, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3