Associations of Long-Term Exposure to PM2.5 and Its Constituents with Erythrocytosis and Thrombocytosis in Rural Populations

Author:

Zheng Yiquan1,He Yaling2,Kang Ning1ORCID,Zhang Caiyun1,Liao Wei1,Yuchi Yinghao1,Liu Xiaotian1,Hou Jian1,Mao Zhenxing1ORCID,Huo Wenqian1ORCID,Zhang Kai3,Tian Hezhong4ORCID,Lin Hualiang15,Wang Chongjian1ORCID

Affiliation:

1. Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China

2. Department of Occupational and Environmental Health, Ministry of Education, Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China

3. Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY 12222, USA

4. State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China

5. Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510275, China

Abstract

Evidence on the effect of long-term exposure to fine particulate matter (PM2.5) on erythrocytosis and thrombocytosis prevalence was limited. We aimed to investigate the association of PM2.5 and its constituents with the risks of erythrocytosis and thrombocytosis. The present study included a total of 33,585 participants from the Henan Rural Cohort at baseline between 2015 and 2017. A hybrid satellite-based model was employed to estimate the concentrations of PM2.5 mass and its constituents (including black carbon [BC], nitrate [NO3−], ammonium [NH4+], inorganic sulfate [SO42−], organic matter [OM], and soil particles [SOIL]). The logistic regression model was used to assess the associations of single exposure to PM2.5 and its constituents with the risks of erythrocytosis and thrombocytosis, and the quantile G-computation method was applied to evaluate their joint exposure risk. For the independent association, the odds ratios for erythrocytosis/thrombocytosis with 1 μg/m3 increase was 1.049/1.043 for PM2.5 mass, 1.596/1.610 for BC, 1.410/1.231 for NH4+, 1.205/1.139 for NO3−, 1.221/1.359 for OM, 1.300/1.143 for SO42−, and 1.197/1.313 for SOIL. Joint exposure to PM2.5 and its components was also positively associated with erythrocytosis and thrombocytosis. The estimated weight of NH4+ was found to be the largest for erythrocytosis, while OM had the largest weight for thrombocytosis. PM2.5 mass and its constituents were positively linked to prevalent erythrocytosis and thrombocytosis, both in single-exposure and joint-exposure models. Additionally, NH4+/OM was identified as a potentially responsible component for the association between PM2.5 and erythrocytosis/thrombocytosis.

Funder

Science and Technology Innovation Team Support Plan of Colleges and Universities in Henan Province

Zhengzhou University

Foundation of National Key Program of Research and Development of China

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3