TGF-β Regulates m6A RNA Methylation after PM2.5 Exposure

Author:

Wu Tingting1,Liu Bingqian1,Wei Yongjie1,Li Zhigang1ORCID

Affiliation:

1. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

Abstract

PM2.5 exposure leads to a variety of respiratory diseases, including pulmonary fibrosis, metastatic lung cancer, etc. Exposure to PM2.5 results in the alteration of epigenetic modification. M6A RNA methylation is an essential epigenetic modification that regulates gene expression at the post-transcriptional level. Our previous study found that PM2.5 exposure up-regulated m6A RNA methylation and TGF-β expression level in the lung, but the mechanisms and pathways of PM2.5 regulation of m6A RNA methylation are still unclear. Moreover, a previous study reported that the TGF-β signal pathway could regulate m6A RNA methylation. Based on this evidence, we investigate the role of the TGF-β signaling pathway in PM2.5-induced m6A RNA methylation with the A549 cell line. Our results showed that PM2.5 could induce upregulation of m6A RNA methylation, accompanied by increased expression of TGF-β, Smad3, methyltransferase-like 3 (METTL3), methyltransferase-like 14 (METTL14). Furthermore, these alterations induced by PM2.5 exposure could be reversed by treatment with TGF-β inhibitor. Therefore, we speculated that the TGF-β signal pathway plays an indispensable role in regulating m6A RNA methylation after PM2.5 exposure. Our study demonstrates that PM2.5 exposure influences m6A RNA methylation by inducing the alteration of the TGF-β signal pathway, which could be an essential mechanism for lung-related diseases induced by PM2.5 exposure.

Funder

Budget Surplus of Central Financial Science and Technology Plan

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Reference40 articles.

1. Health Effects Associated with PM2.5: A Systematic Review;Sharma;Curr. Pollut. Rep.,2020

2. Exposure to urban particulate matter and its association with human health risks;Alemayehu;Environ. Sci. Pollut. Res. Int.,2020

3. Atmospheric pollution characteristics of fine particles and their effects on human health;Tao;Acta Sci. Circumstantiae,2014

4. Effect of Ambient PM2.5 on Migration and Invasion in Human A549 Lung Cancer Cells;Lei;Asian J. Ecotoxicol.,2018

5. Ambient air pollution and thrombosis;Robertson;Part. Fibre Toxicol.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3