Depicting the Profile of METTL3-Mediated lncRNA m6A Modification Variants and Identified SNHG7 as a Prognostic Indicator of MNNG-Induced Gastric Cancer

Author:

Liu Tong12ORCID,Feng Yanlu2,Yang Sheng2ORCID,Ge Yiling2,Zhang Tianyi2,Li Jie2,Li Chengyun1,Ruan Ye1,Luo Bin1,Liang Geyu2

Affiliation:

1. Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China

2. Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China

Abstract

As a representative example of an environmental chemical carcinogen, MNNG exposure is closely associated with the onset of gastric cancer (GC) where N6-methyladenosine (m6A) RNA methylation tends to be the critical epigenetic event. However, the effect of m6A modification on long non-coding RNAs (lncRNAs) in MNNG-induced GC onset is still unclear. To address the above issue, based on the Methylated RNA immunoprecipitation sequencing (MeRIP-seq) data of MNNG-induced malignant cells (MCs) and GC cells, we comprehensively analyzed the MNNG exposure-associated vital lncRNAs. MeRIP-seq analysis identified 1432 lncRNA transcripts in the MC cell, and 3520 lncRNA transcripts were found to be m6A modified in the GC cell, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that MNNG exposure could spark cellular localization change, which might be the critical cellular note variation for malignant transformation. We demonstrated that METTL3 is responsible for N6 methylation of lncRNAs and identified SNHG7 as a downstream target of METTL3. More importantly, we observed that SNHG7 was progressively up-regulated during gastric carcinogenesis by MNNG exposure. Finally, we investigated SNHG7 expression in different stages of GC malignancies and found that elevated SNHG7 expression correlated with advanced clinical features and poor prognosis in GC. In conclusion, our study found for the first time that METTL3 regulates the m6A methylation level of lncRNA SNHG7 and its expression in MNNG exposure-induced GC, suggesting that SNHG7 as a predictive biomarker or therapeutic target for GC.

Funder

National Natural Science Foundation of China

Medical Innovation and Development Project of Lanzhou University

Fundamental Research Funds for the Central Universities

Key Research and Develop-ment Plan (Social Development) Project of Jiangsu Province

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3