Forecast of Fine Particles in Chengdu under Autumn–Winter Synoptic Conditions

Author:

Yang Jingchao12,Wang Ge12ORCID,Zhang Chao3ORCID

Affiliation:

1. Institute of Plateau Meteorology, China Meteorological Administration, Chengdu 610072, China

2. Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province, Chengdu 610072, China

3. Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China

Abstract

We conducted an evaluation of the impact of meteorological factor forecasts on the prediction of fine particles in Chengdu, China, during autumn and winter, utilizing the European Cooperation in Science and Technology (COST)733 objective weather classification software and the Community Multiscale Air Quality model. This analysis was performed under four prevailing weather patterns. Fine particle pollution tended to occur under high-pressure rear, homogeneous-pressure, and low-pressure conditions; by contrast, fine particle concentrations were lower under high-pressure bottom conditions. The forecasts of fine particle concentrations were more accurate under high-pressure bottom conditions than under high-pressure rear and homogeneous-pressure conditions. Moreover, under all conditions, the 24 h forecast of fine particle concentrations were more accurate than the 48 and 72 h forecasts. Regarding meteorological factors, forecasts of 2 m relative humidity and 10 m wind speed were more accurate under high-pressure bottom conditions than high-pressure rear and homogeneous-pressure conditions. Moreover, 2 m relative humidity and 10 m wind speed were important factors for forecasting fine particles, whereas 2 m air temperature was not. Finally, the 24 h forecasts of meteorological factors were more accurate than the 48 and 72 h forecasts, consistent with the forecasting of fine particles.

Funder

Key R&D Program of Sichuan, China

Second Tibetan Plateau Scientific Expedition and Research (STEP) program

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3