Hormesis and Low Toxic Effects of Three Lanthanides in Microfungi Isolated from Rare Earth Mining Waste in Northwestern Russia

Author:

Kasatkina Elena A.1ORCID,Shumilov Oleg I.1,Kirtsideli Irina Y.2,Makarov Dmitry V.1

Affiliation:

1. Institute of North Industrial Ecology Problems, Kola Science Centre, Russian Academy of Sciences, 184209 Apatity, Russia

2. Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia

Abstract

The low-dose toxicity of chloride and nitrate salts of three lanthanides (La, Ce and Nd) was tested on six microfungal species. Five of them (Geomyces vinaceus, Aspergillus niveoglaucus, Pseudogymnoascus pannorum, Penicillium simplicissimum and Umbelopsis isabellina) were isolated from the loparite ore tailings on the Kola Peninsula, northwestern Russia. Sydowia polyspora was a control strain. In the case of nitrate salts, the toxicity of REEs to four of six microorganisms was significantly (p < 0.5) lower compared to chloride salts. In this case, nitrates can play the role of exogenous nutrients, compensating for the toxic effect of REEs. Interestingly, U. isabellina only showed an opposite response, indicating the highest toxicity of nitrate (IC5 = 9–20 mg/L) REEs’ salts compared to chlorides (IC5 = 80–195 mg/L) at low concentration levels. In addition, treatment with lanthanides showed a “hormesis effect” on fungal growth with stimulation at low doses and inhibition at high doses. However, U. isabellina and S. polyspora demonstrated the absence of hormetic response under the treatment of REEs’ nitrate salt. Taking into account the specific hormetic responses and high tolerance of P. simplicissimum and U. isabellina to lanthanides, our findings may be useful in the assessment of the potential application of the selected fungi to bioremediation and REE bioleaching.

Funder

State Task of the Institute of North Industrial Ecology Problems KSC RAS

Komarov Botanical Institute RAS

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3