A Novel Risk Assessment for Cable Fires Based on a Hybrid Cloud-Model-Enabled Dynamic Bayesian Network Method

Author:

Gao Shenyuan123,Huang Guozhong1,Xiang Zhijin1,Yang Yan1,Gao Xuehong1ORCID

Affiliation:

1. Research Institute of Macro-Safety Science, University of Science and Technology Beijing, Beijing 100083, China

2. China National Institute of Standardization, Beijing 100088, China

3. Key Laboratory of Product Defect and Safety for State Market Regulation, Beijing 100088, China

Abstract

The fire risk of cables constantly changes over time and is affected by the materials and working conditions of cables. To address its internal timing property, it is essential to use a dynamic analysis method to assess cable fire risk. Meanwhile, data uncertainty resulting in the deviation of risk values must also be considered in the risk assessment. In this regard, this study proposes a hybrid cloud model (CM)-enabled Dynamic Bayesian network (DBN) method to estimate the cable fire risk under uncertainty. In particular, the CM is initially applied to determine the membership degrees of the assessment data relative to different states of the root nodes; then, these degrees are considered the prior probabilities of DBN, where the dynamic risk profiles are reasoned. Subsequently, the Birnbaum and Fussell–Vesely importance measures are constructed to identify the key nodes for risk prevention and control, respectively. Moreover, a case study of the Chongqing Tobacco Logistics Distribution Center is conducted, the computational results of which indicate the proposed method’s decision-making effectiveness. Finally, a comparison of the reasoning results between the proposed and traditional methods is performed, presenting strong evidence that demonstrates the reliability of the proposed method.

Funder

Interdisciplinary Research Project for Young Teachers of USTB

Central Basic Research Fund project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3