Theoretical Discrimination Method of Water-Flowing Fractured Zone Development Height Based on Thin Plate Theory

Author:

Wu Fengfeng12,Gao Zhiqiang12,Liu Huaidong12,Yu Xin12,Gu Haoyuan12ORCID

Affiliation:

1. Key Laboratory of Deep Coal Resource Mining, Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China

2. School of Mines, China University of Mining and Technology, Xuzhou 221116, China

Abstract

The water-flowing fractured zone development height (WFZDH) is of great importance for water prevention and control in coal mines. The purpose of this research is to obtain a WFZDH prediction method of the first mining face based on thin plate theory, considering the rock stratum as a thin plate. By analyzing the thin plate, we expect to derive formulas for deflection, thus further analyzing the deformation of the rock formation. Existing methods tend to analyze the rock stratum as if they were beams, and their results are errors from reality. The proposed method is more realistic in analyzing the rock stratum as a plate. The theoretical discrimination method for the WFZDH based on thin-plate theory was investigated using theoretical analysis, numerical simulation, and field measurements. A mechanical model of the key stratum (a hard and thick rock stratum that controls the activity of all rock formations overlying a mining site, either locally or up to the surface) as a thin plate was established. The formulae for the deflection of the key stratum and the critical span for fracture were obtained from this model. The failure of the key stratum must meet two conditions: the key stratum’s suspended span exceeds the critical span at which key strata first fracture, and the free space height below the key stratum is greater than its maximum deflection. Based on the above demarcation basis and key stratum failure conditions, the method of discriminating the WFZDH and its applicable conditions are proposed. In accordance with Yeping Coal Mine’s geological background, the method was applied to discriminate the WFZDH, and the WFZDH was calculated to be 54 m. The results of the numerical simulation show that WFZDH is 55 m, and the measured results using the double-end water plugging device observation method and the Borehole TV method are 55.3 m~58.9 m. By comparing and analyzing the results obtained via various methods, the results show that the WFZDH analyzed using thin-plate theory is similar to those measured in the field and obtained through numerical simulation, verifying the appropriateness and practicability of the WFZDH discrimination method based on thin-plate theory. This research obtained the WFZDH of Yeping Coal Mine, which ensured its safe mining and provided guidance for the estimation of WFZDH in other mines with similar conditions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3