Synthesis, Characterization, and Antibacterial Activity of Graphene Oxide/Zinc Hydroxide Nanocomposites

Author:

Sanchez Jo Ann1,Materon Luis2,Parsons Jason G.3ORCID,Alcoutlabi Mataz1ORCID

Affiliation:

1. Mechanical Engineering Department, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA

2. Department of Biology, University of Texas, Rio Grande Valley, Edinburg, TX 78539, USA

3. School of Earth, Environmental, and Marine Sciences, University of Texas, Rio Grande Valley, 1 W University Blvd., Brownsville, TX 78521, USA

Abstract

Graphene and graphene oxide have shown good antibacterial activity against different bacterial species due to their unique physicochemical properties. Graphene oxide (GO) has been widely used to load metallic and metal oxide nanoparticles (NPs) to minimize their surface energy during processing and preparation, hence reducing their aggregation. In this work, GO was effectively synthesized and coated with different concentrations of zinc hydroxide Zn (OH)x using the precipitation method to prepare a GO/Zn (OH)x hybrid composite. The Zn (OH)x NPs and GO/Zn (OH)x nanocomposites were synthesized and characterized using various methods such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Coating GO with Zn (OH)x NPs resulted in improved aggregation of Zn (OH)x NPs as well as enhanced antibacterial activity of GO against Gram-positive and Gram-negative bacteria. Additionally, the effect of Zn (OH)x coating on the antibacterial properties of the GO/Zn (OH)x composite was systematically investigated. The synergistic effects of GO and Zn (OH)x NPs resulted in enhanced antibacterial properties of the composites compared to the pristine GO material. In addition, increasing the Zn (OH)x wt. % concentration led to an increased inhibition zone of the GO/Zn (H)x composite against Bacillus megaterium and E. coli bacteria.

Funder

NSF PREM

UTRGV Chemistry Departmental Welch Foundation Grant

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3