NOx Formation Mechanism and Emission Prediction in Turbulent Combustion: A Review

Author:

Wang Zhichao1,Yang Xiaoyi1ORCID

Affiliation:

1. School of Energy and Power Engineering, Energy and Environment International Center, Beihang University, Beijing 100191, China

Abstract

The field of nitric oxide (NOx) production combined with turbulent flow is a complex issue of combustion, especially for the different time scales of reactions and flow in numerical simulations. Around this, a series of approach methods, including the empirical formula approach, the computational fluid dynamics (CFD) approach coupling with an infinite rate chemical reaction, the chemical reaction networks (CRNs), and the CFD approach coupling with CRNs, were classified, and we discussed its advantages and applicability. The empirical-formula approach can provide an average range of NOx concentration, and this method can be involved only in special scenarios. However, its simplicity and feasibility still promote practical use, and it is still widely applied in engineering. Moreover, with the help of artificial intelligence, this method was improved in regard to its accuracy. The CFD approach could describe the flow field comprehensively. In compliance with considering NOx formation as finite-rate chemical reactions, the NOx concentration distribution via simulation cannot match well with experimental results due to the restriction caused by the simplification of the combustion reaction. Considering NOx formation as a finite-rate chemical reaction, the CRNs approach was involved in CFD simulation, and the CRNs approach could forecast the NOx concentration distribution in the flow field. This article mainly focuses on the simulation method of nitric oxide (NOx) production in different combustion conditions. This review could help readers understand the details of the NOx formation mechanism and NOx formation prediction approach.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3