Diagnosis of Sepsis by AI-Aided Proteomics Using 2D Electrophoresis Images of Patient Serum Incorporating Transfer Learning for Deep Neural Networks

Author:

Hayashi NobuhiroORCID,Sawada YoshihideORCID,Ujimoto Kei,Yamaguchi Syunta,Sato Yoshikuni,Miki Takahiro,Nakada Toru,Iba ToshiakiORCID

Abstract

An accuracy of ≥98% was achieved in sepsis diagnosis using serum samples from 30 sepsis patients and 68 healthy individuals and a high-performance two-dimensional polyacrylamide gel electrophoresis (HP-2D-PAGE) method developed here with deep learning and transfer learning algorithms. In this method, small-scale target domain data, which are collected to achieve our objective, are inputted directly into a model constructed with source domain data which are collected from a different domain from the target; target vectors are estimated with the outputted target domain data and applied to refine the model. Recognition performance of small-scale data is improved by reusing all layers, including the output layers of the neural network. Proteomics is generally considered the ultimate bio-diagnostic technique and provides extremely high information density in its two-dimensional electrophoresis images, but extracting the data has posed a basic problem. The present study is expected to solve that problem and will be an important breakthrough for practical utilization and future perspectives of proteomics in clinics after evaluation in clinical settings.

Funder

Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3