Visible Laser Light Mediated Cancer Therapy via Photothermal Effect of Tannin-Stabilized Magnetic Iron Oxide Nanoparticles

Author:

Gupta Nikesh1ORCID,Gupta Chetna2,Bohidar Himadri B.13ORCID

Affiliation:

1. Special Centre for Nanosciences (SCNS), Jawaharlal Nehru University, New Delhi 110067, India

2. Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India

3. School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India

Abstract

Super-paramagnetic iron oxide nanoparticles (SPIONs/Fe3O4) were synthesized in aqueous medium under a nitrogen atmosphere. These particles were made water-dispersible by cladding them with tannic acid (TA). The synthesized nanoparticles were characterized for their size and surface charge using HRTEM and zetasizer. It was found that the size of the particles formed was around 15 nm with almost spherical morphology and negative surface charge. Vibrating sample magnetometer (VSM) data attributed a super-paramagnetic nature to these nanoparticles. The photo-thermal dynamics of these magnetite (Fe3O4) nanoparticles was characterized by exciting their dispersions with laser radiation in the visible region (635 nm). Remarkably, 17 min of laser irradiation of the dispersion raised its temperature by ~25 °C (25 to 49.8 °C), whereas for the solvent, it was limited to not more than 4 °C (after 60 min). Thus, the Fe3O4 nanoparticles generated localized hyperthermia for potential use in cancer therapy of tumor management. The photo-thermal dynamics of these nanoparticles was investigated in-vitro for cancer therapy, and it was clearly shown that cancer cell growth was inhibited, and considerable cellular damage occurred when cells were incubated with laser-activated magnetic nanoparticles. No noticeable innate toxicity of the nanoparticles was observed on cancer cell lines. The effectiveness of these nanoparticles was studied on several malignant cell lines, and an acceptable Fe3O4 concentration range was subsequently determined for generating substantial cell death by hyperthermia, but not inherent toxicity. Therefore, we concluded that this nano-system is effective and less time consuming for the treatment of malignant diseases such as cancer.

Funder

University Grants Commission

University of Delhi

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3