Abstract
Africa accounts for nearly 30% of the discovered world’s mineral reserves, with half of the world’s platinum group metals deposits, 36% of gold, and 20% of cobalt being in Southern Africa (SA). The intensification of heavy-metal production in the SA region has exacerbated negative human and environmental health impacts. In recent years, mining waste generated from industrial and artisanal mining has significantly affected the ecological integrity of SA aquatic ecosystems due to the accelerated introduction and deposition of heavy metals. However, the extent to which heavy-metal pollution associated with mining has impacted the aquatic ecosystems has not been adequately documented, particularly during bioassessments. This review explores the current aquatic ecological impacts on the heavily mined river basins of SA. It also discusses the approaches to assessing the ecological risks, inherent challenges, and potential for developing an integrated ecological risk assessment protocol for aquatic systems in the region. Progress has been made in developing rapid bioassessment schemes (RBS) for SA aquatic ecosystems. Nevertheless, method integration, which also involves heavy-metal pollution monitoring and molecular technology, is necessary to overcome the current challenges of the standardisation of RBS protocols. Citizenry science will also encourage community and stakeholder involvement in sustainable environmental management in SA.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Reference313 articles.
1. The Zambezi River Basin: Water and Sustainable Development;Lautze,2017
2. The Wetlands Book II;Harrison,2018
3. CRIDF A River Basin View of Southern Africahttp://cridf.net/cribmap/
4. Mineral Deposits of Southern Africa-Volume I;Anhaeusser,1986
5. A History of Global Metal Pollution
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献