Bridging Convolutional Neural Networks and Transformers for Efficient Crack Detection in Concrete Building Structures

Author:

Yadav Dhirendra Prasad1,Sharma Bhisham2ORCID,Chauhan Shivank1,Dhaou Imed Ben345ORCID

Affiliation:

1. Department of Computer Engineering & Applications, G.L.A. University, Mathura 281406, India

2. Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India

3. Department of Computer Science, Hekma School of Engineering, Computing, and Design, Dar Al-Hekma University, Jeddah 22246-4872, Saudi Arabia

4. Department of Computing, University of Turku, 20014 Turku, Finland

5. Higher Institute of Computer Sciences and Mathematics, Department of Technology, University of Monastir, Monastir 5000, Tunisia

Abstract

Detecting cracks in building structures is an essential practice that ensures safety, promotes longevity, and maintains the economic value of the built environment. In the past, machine learning (ML) and deep learning (DL) techniques have been used to enhance classification accuracy. However, the conventional CNN (convolutional neural network) methods incur high computational costs owing to their extensive number of trainable parameters and tend to extract only high-dimensional shallow features that may not comprehensively represent crack characteristics. We proposed a novel convolution and composite attention transformer network (CCTNet) model to address these issues. CCTNet enhances crack identification by processing more input pixels and combining convolution channel attention with window-based self-attention mechanisms. This dual approach aims to leverage the localized feature extraction capabilities of CNNs with the global contextual understanding afforded by self-attention mechanisms. Additionally, we applied an improved cross-attention module within CCTNet to increase the interaction and integration of features across adjacent windows. The performance of CCTNet on the Historical Building Crack2019, SDTNET2018, and proposed DS3 has a precision of 98.60%, 98.93%, and 99.33%, respectively. Furthermore, the training validation loss of the proposed model is close to zero. In addition, the AUC (area under the curve) is 0.99 and 0.98 for the Historical Building Crack2019 and SDTNET2018, respectively. CCTNet not only outperforms existing methodologies but also sets a new standard for the accurate, efficient, and reliable detection of cracks in building structures.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3